Regulation of Late-Stage Flower Development by Downstream Genes of the Homeotic Protein AGAMOUS

نویسندگان

  • Jerry Guo
  • Elliot Meyerowitz
چکیده

The genes and pathways AG regulates in late-stage flower development are largely unknown. Several putative downstream genes of AG involved in anther dehiscence were identified, including DAD1, MYB26, OPR3, COI1, and RBR1, through a bioinformatics approach. A 35S::AG-GR inducible line was constructed for timed-induction expression analysis of anther dehiscence versus indehiscence, which revealed the likely direct induction of DAD1 by AG. Mutated AG binding sites of DAD1 and MYB26 were linked to the β-glucuronidase reporter gene; the plasmid constructs were transformed into plants for GUS staining to test in vivo site activity. Results support the hypothesis that AG is continually functional and controls late-stage flower development by regulation of downstream genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Floral homeotic genes are targets of gibberellin signaling in flower development.

Gibberellins (GAs) are a class of plant hormones involved in the regulation of flower development in Arabidopsis. The GA-deficient ga1-3 mutant shows retarded growth of all floral organs, especially abortive stamen development that results in complete male sterility. Until now, it has not been clear how GA regulates the late-stage development of floral organs after the establishment of their id...

متن کامل

The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis.

The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG e...

متن کامل

Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.

AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meriste...

متن کامل

AGAMOUS Controls GIANT KILLER, a Multifunctional Chromatin Modifier in Reproductive Organ Patterning and Differentiation

The Arabidopsis homeotic protein AGAMOUS (AG), a MADS domain transcription factor, specifies reproductive organ identity during flower development. Using a binding assay and expression analysis, we identified a direct target of AG, GIANT KILLER (GIK), which fine-tunes the expression of multiple genes downstream of AG. The GIK protein contains an AT-hook DNA binding motif that is widely found in...

متن کامل

Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.

Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005